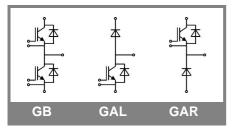


Trench IGBT Modules


SKM 200GB123D SKM 200GAL123D SKM 200GAR123D

Features

- MOS input (voltage controlled)
- N channel, homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distances (20 mm)

Typical Applications

- AC inverter drives
- UPS

Absolute Maximum Ratings $T_c = 25$ °C, unless otherwise specified					
Symbol	Conditions		Values	Units	
IGBT					
V_{CES}	$T_j = 25 \text{ °C}$ $T_i = 150 \text{ °C}$		1200	V	
I _C	T _j = 150 °C	T _{case} = 25 °C	200	Α	
		T _{case} = 85 °C	180	Α	
I _{CRM}	I _{CRM} =2xI _{Cnom}		300	Α	
V _{GES}			± 20	V	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs	
Inverse I	Diode				
I_{F}	T _j = 150 °C	T_{case} = 25 °C	200	Α	
		T_{case} = 80 °C	130	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	Α	
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1440	А	
Freewhe	eling Diode				
I_{F}	T _j = 150 °C	T _{case} = 25 °C	260	Α	
		T_{case} = 80 °C	180	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	Α	
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	1800	А	
Module					
$I_{t(RMS)}$			500	Α	
T _{vj}			- 40 + 150 (125)	°C	
T _{stg}			- 40+ 125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics $T_c =$			25 °C, ur	less oth	erwise sp	pecified Units		
Symbol	Conditions		min.	typ.	max.	Units		
IGBT								
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 6 \text{ mA}$		4,5	5,5	6,5	V		
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA		
V _{CE0}		T _j = 25 °C		1,4	1,6	V		
		T _j = 125 °C		1,6	1,8	V		
r _{CE}	V _{GE} = 15 V	T _j = 25°C		7,33	9,33	mΩ		
		T _j = 125°C		10	12,66	$m\Omega$		
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V	T _j = °C _{chiplev.}		2,5	3	V		
C _{ies}				10	13	nF		
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		1,5	2	nF		
C _{res}				0,8	1,2	nF		
Q_G	V _{GE} = -8V - +20V			1500		nC		
R _{Gint}	T _j = °C			2,5		Ω		
t _{d(on)}				220	400	ns		
Ţ,	R_{Gon} = 5,6 Ω	V _{CC} = 600V		100	200	ns		
E _{on}		I _{Cnom} = 150A		24		mJ		
t _{d(off)}	$R_{Goff} = 5.6 \Omega$	T _j = 125 °C		600	800	ns		
t _f		V _{GE} = -15V		70	100	ns		
E _{off}				17		mJ		
R _{th(j-c)}	per IGBT	· ·			0,09	K/W		

Trench IGBT Modules

SKM 200GB123D SKM 200GAL123D SKM 200GAR123D

Features

- MOS input (voltage controlled)
- N channel, homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distances (20 mm)

Typical Applications

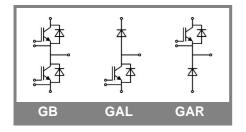
- AC inverter drives
- UPS

Characte	ristics						
Symbol	Conditions	l	min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I _{Fnom} = 150 A; V _{GE} = 0 V			2	2,5	V	
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,8		V	
V_{F0}		T _j = 25 °C		1,1	1,2	V	
		T _j = 125 °C				V	
r _F		T _j = 25 °C		6	8,7	mΩ	
		T _j = 125 °C				mΩ	
I _{RRM}	I _{Fnom} = 150 A	T _j = 125 °C		90		Α	
Q _{rr}	di/dt = 1500 A/μs			8		μC	
E _{rr}	$V_{GE} = -15 \text{ V}; V_{cc} = 600 \text{ V}$			6,6		mJ	
R _{th(j-c)D}	per diode				0,25	K/W	
	eling Diode						
$V_F = V_{EC}$	$I_{Fnom} = 200 \text{ A}; V_{GE} = 0 \text{ V}$			2	2,5	V	
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$ $T_j = 25 ^{\circ}C$		1,8		V	
V_{F0}				1,1	1,2	V	
		T _j = 125 °C				V	
r _F		T _j = 25 °C		4,5	6,5	V	
		T _j = 125 °C				V	
I _{RRM}	I _{Fnom} = 200 A	T _j = 125 °C		120		A	
Q _{rr}	di/dt = 2000 A/μs			11		μC	
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ	
R _{th(j-c)FD}	per diode				0,18	K/W	
Module							
L _{CE}				15	20	nΗ	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ	
		T _{case} = 125 °C		0,5		mΩ	
R _{th(c-s)}	per module				0,038	K/W	
M _s	to heat sink M6		3		5	Nm	
M _t	to terminals M6, M4		2,5		5	Nm	
w					325	g	

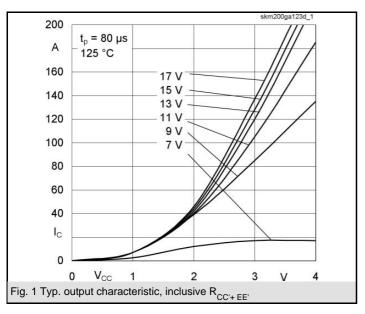
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

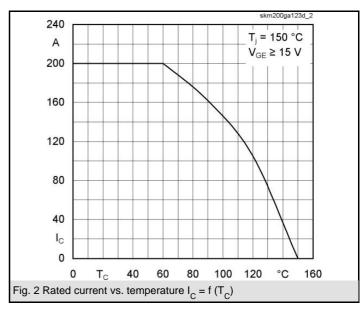
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

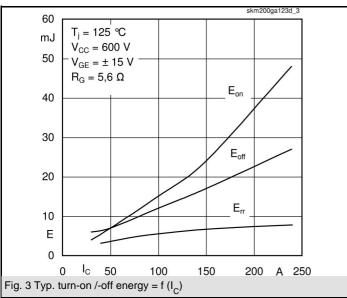
Trench IGBT Modules

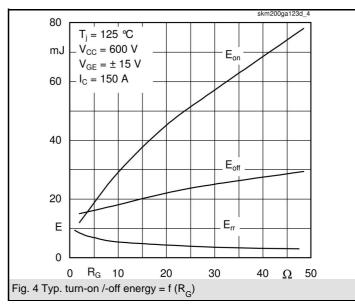

SKM 200GB123D SKM 200GAL123D SKM 200GAR123D

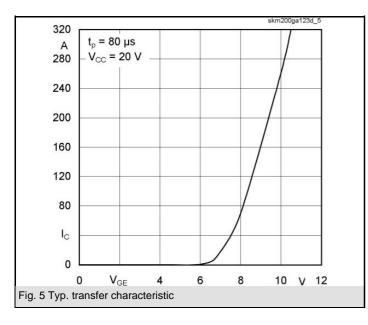
_				
_	\sim	+ 11	ire	0
	CO	LЦ		•

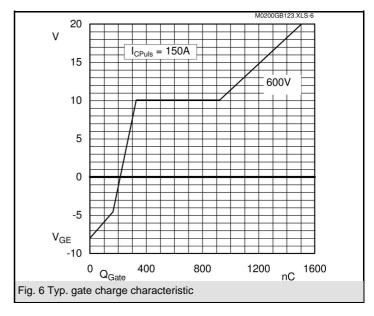

- MOS input (voltage controlled)
- . N channel, homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distances (20 mm)

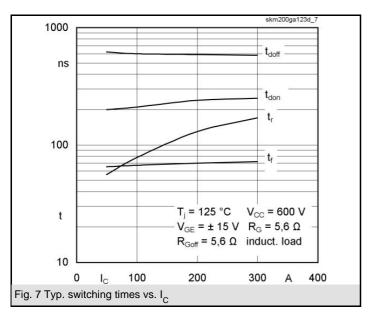

Typical Applications

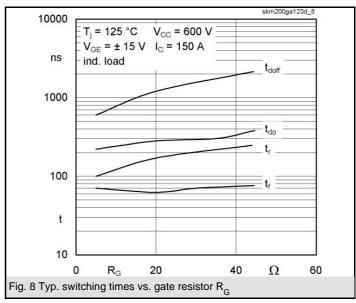

- AC inverter drives
- UPS

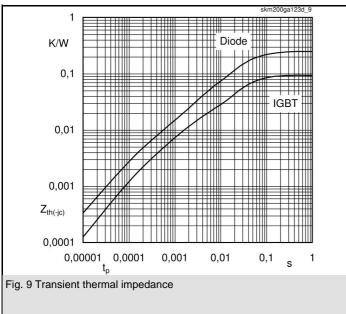


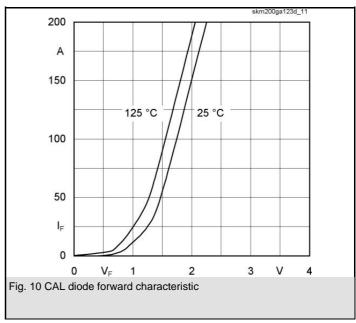

Z _{th}							
Symbol	Conditions	Values	Units				
Z _{Ri}	i = 1	59	mk/W				
R _i	i = 2	23	mk/W				
R_{i}	i = 3	6,8	mk/W				
R_{i}	i = 4	1,2	mk/W				
tau _i	i = 1	0,03	s				
tau _i	i = 2	0,0087	s				
tau _i	i = 3	0,002	s				
tau _i	i = 4	0,0002	s				
Z _{th(j-c)D}							
R _i	i = 1	170	mk/W				
R _i	i = 2	66	mk/W				
R _i R _i	i = 3	12	mk/W				
R_i	i = 4	2	mk/W				
tau _i	i = 1	0,0348	s				
tau _i	i = 2	0,0072	s				
tau _i	i = 3	0,077	s				
tau _i	i = 4	0,0002	s				

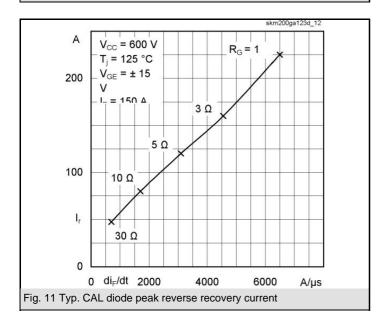


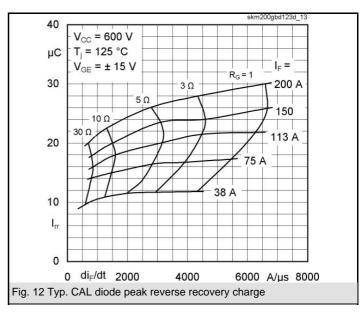


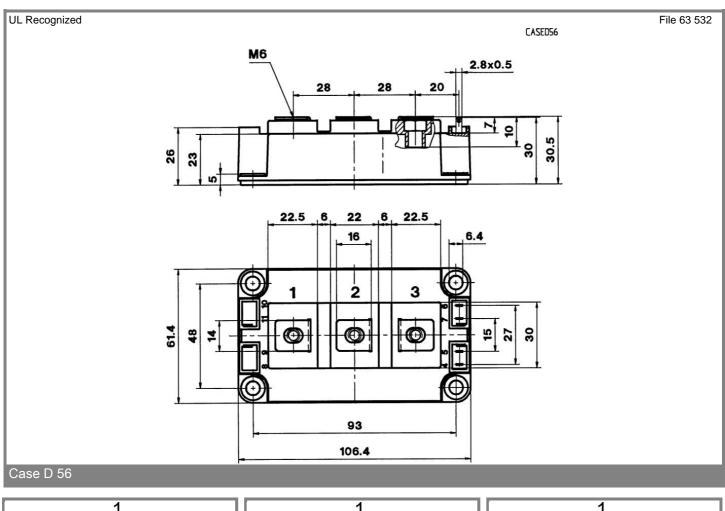


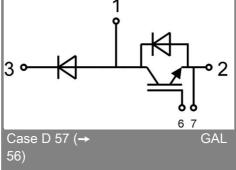


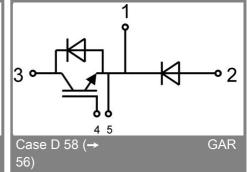












6 07-03-2007 RAA © by SEMIKRON